提醒:点这里加小编微信(领取免费资料、获取最新资讯、解决考教师一切疑问!)
2逐步拓展:在高中我们已经建立了直角坐标系,从直角三角形改为平面直角坐标系。
那么三角函数的定义能否也放到坐标系去研究呢?
把三角函数的定义发展到用终边上任一点的坐标来表示, 从而锐角三角函数可以使用直角坐标系来定义,自然地,要想定义任意一个角三角函数,便考虑放在直角坐标中进行合理进行定义了
设a是一个任意角,它的始边与x轴正半轴重合,在终边的终边上任取一点P(a,b),它与原点的距离r=>0,
表示三角函数;sin=, cos=, tan=,
(1) 叫做a的正弦,记作sina, sin=,
(2) x叫做a的余弦,记作cosa,即cosa=;
(3) ,叫做a的正切,记作tana,即tana=,。
我们将它们统称为三角函数。
从而得到
知识归纳一:任意一个角的三角函数的定义
提醒学生思考:由于相似比相等,对于确定的角A ,这三个比值的大小和P点在角的终边上的位置无关.
3例题讲解
例1已知角A 的终边经过P(2,-3),求角A的三个三角函数值
(此题由学生自己分析独立动手完成)
知识归纳二:三个三角函数的定义域
例题变式1, 已知角A 的终边经过P(-2a,-3a)( a不为0),求角A的三个三角函数值
解答中需要对变量的正负即角所在象限进行讨论, 让学生意识到三角函数值的正负与角所在象限有关,从而导出第三个知识点
知识归纳三:三角函数值的正负与角所在象限的关系
由学生推出结论,教师总结符号记忆方法:一全正,二正弦,三两切,四余弦,便于学生记忆
例题2:已知A在第二象限且 sinA=0.2 求cosA,tanA
求cosA,tanA
拓展,如果不限制A的象限呢,可以留作课外探讨
4随堂练习
1、若,则在( B )
A.第一、四象限 B.第一、三象限 C.第一、二象限 D.第二、四象限
2、角终边上有一点(a,a)则sin= ( B )
A. B.-或 C.- D.1
5小结:
1、 任意角三角函数的定义
2、 三角函数值的符号
3、 会求任意角三角函数值
6课堂作业P100 1,2,4
(学生演板,教师讲解)
课后分层作业(满足不同层次的学生)
必作P23 1,2,3 练习B
五、板书设计
课题引入定义例一例二
小结
提醒:点这里加小编微信(领取免费资料、获取最新资讯、解决考教师一切疑问!)