提醒:点这里加小编微信(领取免费资料、获取最新资讯、解决考教师一切疑问!)

六、复合命题及其推理

复合命题是包含了其他命题的一种命题,一般说,它是由若干个(至少一个)简单命题通过一定的逻辑联结词组合而成的。

(一)联言命题

联言命题是断定事物的若干种情况同时存在的命题。联言命题所包含的肢命题称为联言肢。如果取"并且"作为联言命题的典型联结词,用"P"、"q"等来表示联言肢,那么联言命题的形式可表示为:P并且q.逻辑上则表示为:P∧q(读作P合取q)。联言命题的真假关系如下:(1)P真,q真,则P∧q为真;(2)P真,q假,则P∧q为假;(3)P假,q真,则P∧q为假;(4)P假,q假,则P∧q为假。

(二)选言命题

选言命题是断定事物若干种可能情况的命题。选言命题也是由两个以上的肢判断所组成的,包含在选言命题里的肢命题称为选言肢。

1.相容的选言命题

断定事物若干种可能情况中至少有一种情况存在的命题就是相容的选言命题。我们通常用如下形式来表示相容的选言命题:P或者q.逻辑上则表示为:P ∨ q(读作"P析取q")。其真假关系如下:(1)P真,q真,则P ∨ q为真;(2)P真,q假,则P ∨ q为真;(3)P假,q真,则P ∨ q为真;(4)P假,q假,则P ∨ q为假。

相容的选言推理的规则有两条:

(1)否定一部分选言肢,就要肯定另一部分选言肢;

(2)肯定一部分选言肢,不能否定另一部分选言肢。

2.不相容的选言命题

不相容的选言命题是断定事物若干可能情况中有而且只有~种情况存在的命题。我们通常用如下形式来表示不相容的选言命题:要么P,要么q.其真假关系如下:(1)P真,q真,则P ∨ q为假;(2)P真,q假,则P ∨ q为真;(3)P假,q真,则P ∨ q为真;(4)P假,q假,则P ∨ q为假。

根据不相容选言命题的逻辑性质,不相容选言推理有两条规则:

(1)肯定一个选言肢,就要否定其余的选言肢;

(2)否定一个选言肢以外的选言肢,就要肯定未被否定的那个选言肢。

(三)假言命题

假言命题是断定事物情况之间条件关系的命题。假言命题中,表示条件的肢命题称为假言命题的前件,表示依赖该条件而成立的命题称为假言命题的后件。假言命题因其所包含的联结词的不同而具有不同的逻辑性质。

1.充分条件假言命题

充分条件的假言命题是指前件是后件的充分条件的假言命题。其逻辑公式是:如果P,那么q;逻辑上则表示为:p→q(读作"P蕴涵q")。其真假关系如下:(1)P真,q真,则p→q为真;(2)P真,q假,则p→ q为假;(3)P假,q真,则p→q为真;(4)P假,q假,则p→q为真。

充分条件假言推理就相应地有如下两条规则:

(1)肯定前件就要肯定后件,否定后件就要否定前件;

(2)否定前件不能否定后件,肯定后件不能肯定前件。

2.必要条件假言命题

必要条件的假言命题是指前件是后件的必要条件的假言命题。我们一般把必要条件假言命题表述成如下形式:只有P,才q.逻辑上则表示为:p←q(读作"P反蕴涵q")。

必要条件假言判断标准形式是:"只有P,才q",其真假关系如下:(1)P真,q真,则p←q为真;(2)P真,q假,则p←q为真;(3)P假,q真,则p←q为假;(4)P假,q假,则p←q为真。

必要条件假言推理也相应有两条规则:

(1)否定前件就要否定后件,肯定后件就要肯定前件。

(2)肯定前件不能肯定后件,否定后件不能否定前件。

3.充分必要条件假言命题

我们一般将之表示为:当且仅当P,则q.逻辑上则表示为:p(q(读作"P等值于q")。P是q的充分必要条件是指:有P必有q,无P必无q.必要条件假言判断标准形式是:"当且仅当P,才q",其真假关系如下:(1)P真,q真,则P(q为真;(2)P真,q假,则P(q为真;(3)P假,q真,则p(q为假;(4)P假,q假,则 p(q为真。

(四)负命题

通过对原命题断定情况的否定而作出的命题,就叫做负命题。负命题的逻辑公式是:如果用P表示原命题,那么,负命即为"并非P".其真假关系为:(1)p真,则P假;(2)p假,则P真。

(五)二难推理

二难推理是由两个假言前提和一个具有二肢的选言前提联合作为前提而构成的推理,它也称为假言选言推理。

七、模态命题

在逻辑中,"必然"、"可能"、"不可能"等叫做"模态词",包含模态词的命题叫做"模态命题".

根据四种模态命题之间的逻辑关系(真假关系),便可构成一系列简单的模态命题的直接推理。

(一)根据模态命题矛盾关系的直接推理

1.必然P,推出并非可能非P;

2.并非必然P,推出可能非P;

3.可能非P,推出并非必然P;

4.并非可能非P,推出必然P;

5.必然非P,推出并非可能P;

6.并非必然非P,推出可能P;

7.可能P,推出并非必然非P;

8.并非可能P,推出必然非P.

(二)根据模态命题反对关系的直接推理

1.必然P,推出并非必然非P;

2.必然非P,推出并非必然P.

(三)根据模态命题下反对关系的直接推理

1.并非可能P,推出可能非P;

2.并非可能非P,推出可能P.

(四)根据模态命题差等关系的直接推理

1.必然P,推出可能P;

2.并非可能P,推出并非必然P;

3.必然非P,推出可能非P;

4.并非可能非P,推出并非必然非P.

八、逻辑基本规律

(一)同一律

同一律的基本内容是:在同一思维过程中,每一思想的自身必须是同一的。同一律的公式是:"A是 A".公式中的A可以表示任何思想,即可以表示任何一个概念或任何一个命题。就是说,在同一思维过程中。所使用的每一概念或判断都有其确定的内容,不能任意变换。

(二)矛盾律

矛盾律实际上是禁止矛盾律,或不矛盾律。矛盾律的基本内容是:在同一思维过程中,两个互相矛盾或反对的思想不能同时是真的。或者说,一个思想及其否定不能同时是真的。

矛盾律的公式是:并非(A而且非A)。

公式中的"A"表示任一命题,"非A"表示与A具有矛盾关系或反对关系的命题。

(三)排中律

排中律的基本内容是:在同一思维过程中,两个互相矛盾的思想不能同假,必有一真。排中律的公式是:"A或者非A".排中律的主要作用在于保证思想的明确性,思维的明确性是正确思维的一个必要条件。

关注微信公众号xreduv了解最新考试资讯,加QQ群337331076定期发免费辅导资料。教师资格证考试时间临近,推荐教师资格证网校高清 课程(点击购买中学 小学 幼儿园 ,随报随学,不限时间次数。免费试听),关于教师资格证考试相关最新资讯或备考点击进入备考专题

提醒:点这里加小编微信(领取免费资料、获取最新资讯、解决考教师一切疑问!)