提醒:点这里加小编微信(领取免费资料、获取最新资讯、解决考教师一切疑问!)

 (二)探索研究、掌握新知

 我用多媒体演示画椭圆,同时请学生拿出事先准备好的自制教具:木板、细绳、图钉、铅笔,同桌一起合作画椭圆.我在学生的绘图纸上精心设计了三个问题:

 1、在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?

 2、改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?

 3、绳长能小于两图钉之间的距离吗?

 这样,学生边作图、边思考、边讨论,每组学生都可对上述三个问题进行研究比较,我在投影仪上展示学生画出的不同图形,然后参与学生的讨论,引导学生全员参与,积极发言,相互补充,从而探究出三个结论并归纳出椭圆的定义.

 接着学生思考两个问题:

 1、求曲线方程的一般步骤是什么?

 2、圆心在原点的圆的方程与不在原点的方程哪个形式更简单?为什么?

 为了突出椭圆标准方程这一重点,再进一步启发:圆心是圆的中心,那么在椭圆中,两焦点连线中点不也是椭圆的中心吗?那么我们如何建系,才能使所得方程更 简洁呢?学生在问题诱导下,可能大部分会选择两焦点连线中点为原点,以两焦点所在直线作为x轴建立平面直角坐标系,但还可能有学生以两焦点所在直线作为y 轴,甚至还会有个别同学坚持以某一个焦点为原点.

 对于同学们的意见,要给予充分肯定,并鼓励他们按照不同的建系方案进行推导.

 为了突破难点,在学生推导过程中进行思维点拨:我们通常用什么方法化简含有根号的式子?本式是直接平方好呢,还是整理后再平方呢?学生基本完成后,我在投影仪上展示学生不同的推导过程让学生分析讨论.

 学生讨论后可能会形成以下意见:经过整理后再平方过程较简单;以两焦点连线中点为原点建系所得方程形式较简单,但仍不是很简洁.

 针对同学们的讨论意见,我指出:令b2=a2-c2,再两边同除以a2b2,可使方程体现数学的对称美和简约美;不同建系方案得到的方程都叫做椭圆的方程,但这两种形式的方程叫做椭圆的标准方程.

 (三)变式演练、加深理解

 先插入两个例题,第一个例题师生共同完成,第二个例题让学生自己解决。例题围绕椭圆定义及其标准方程这两个重要知识点设计选题,使学生能够根据定义和所 给条件写出椭圆的标准方程;再进行变式练习,采取学生思考,分组交流的方式.而变式练习则更多的体现能力立意,使学生能够灵活的运用知识,提高解决问题的 能力.变式练习采用的多少还要根据学生具体情况予以取舍.

 (四)反思总结、提高素质

 采用同学们积极发言,填写表格的形式对本节内容进行反思、归纳、总结,从而达到深化知识理解,构建知识网络,领悟思想方法的目的.

(五)布置作业,强化落实

   围绕巩固知识、发展能力的目标选择布置书面作业和思考题

 板书设计:

 五、教学评价设计

 本节课学生在自觉进入问题情境后,通过实践、探索、体验、反思等活动开展探究式学习,亲身经历知识的产生过程。开放的课堂环境给予学生充分展示的自由空 间,真正体现学生的主体地位,使学生在知识的形成过程中,获得数学的情感体验,享受到成功的乐趣,同时在思想方法运用、思维能力等方面得到提高和发展。教 师不多的发言也注重分析思维过程,引导学生认识科学的思维规律,让学生在生生互动、师生互动中掌握知识,提高解决问题的能力.

 现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构基础上的,因此我在教学设计过程中注意了:㈠在学生已有知识结构和新概念间寻找“最 近发展区”.㈡引导学生通过同化,顺应掌握新概念。㈢设法走出“概念一带而过,演习铺天盖地”的误区,促使自己与学生一起走进“重视探究、重视交流、重视 过程” 的新天地。

 本节课的设计遵循了教学的基本原则;注重了对学生思维的发展;贯彻了教师对本节内容的理解;体现了“学思结合﹑学用结合﹑学习动机与意志品质结合”。希望对学生的思维品质的培养﹑数学思想的建立﹑心理品质的优化起到良好的作用。

提醒:点这里加小编微信(领取免费资料、获取最新资讯、解决考教师一切疑问!)