提醒:点这里加小编微信(领取免费资料、获取最新资讯、解决考教师一切疑问!)
(构造中心对称为下面利用中心对称的性质研究三角形中位线的性质做铺垫。)
师:通过操作我们可以看到线段DE实质上就是三角形两边中点的连线,我们给这样特殊的线段起个名称叫做三角形的中位。
(板书:三角形的中位线)
三角形的中位线:连结三角形两边中点的线段叫做三角形的中位线。
(三)自主探索,探求新知
师:大家观察黑板上的拚图及所画的图,会发现DE与BC有什么关系?
(小组讨论)学生自由发言 生:DE是平行于BC 生:两个DE的长等于BC
师: DE从位置上看是平行于BC的,而数量上看等于BC的一半。即DE∥BC,DE= BC。这也就是三角形中位线的性质。
(板书:三角形中位线的性质:三角形的中位线平行于第三边,并且等于第三边的一半)
师:你能用符号言语将它表示出来吗?
生:能 因为 AD=DB,AE=CD 所以 DE∥BC,DE= BC
(通过直观的观察让学生得到三角形中位线的性质,培养学生对客观世界的直观认识,培养学生的猜测、归纳能力。)
(四)合作交流、推理证明
师:三角形有中位线的性质只是我们通过直接的观察得到的,它一定是正确的吗?让人总感觉到有点不敢相信,能不能让我们通过推理的方式把它的正确性加以验证呢?生:能。
师:好,我相信大家的能力。请大家根据黑板上的图形,写出已知的条件及所要说明的结论。就让我们勇敢的同学上来将过程展现给大家看一看,大家同时练习好不好?
学生板演,教师点评,强调注意点。
(用推理的方法对三角形的中位线的性质进行验证。培养学生严密的数学态度,也发展学生有条理地思考和表达能力体验成功的喜悦。)
(五)尝试运用,巩固性质
1.性质运用
师:下面我们通过习题尝试运用三角形的中位线性质。
出示:例1 如图,在四边形ABCD中,E、F、G、H分别是边AB、BC、CD、DA的中点,四边形EFGH是平行四边形吗?为什么?
提醒:点这里加小编微信(领取免费资料、获取最新资讯、解决考教师一切疑问!)